

Ankit Vohra AID for BLMS – V 1.0 Page 1 of 19

Application Information Document

for

Basketball League Management System (BLMS)

Version 1.0

Ankit Vohra AID for BLMS – V 1.0 Page 2 of 19

Contents
1 Introduction ... 3

2 System Context Diagram ... 4

3 Use Case Diagram .. 4

4 Architecture Overview Diagram ... 5

5 Functional Viewpoint: Component Model (Static View) ... 6

6 Entity-Relationship Model (ERM) diagram for BLMS DB ... 8

7 Operational Viewpoint: Logical Location View Model / Deployment Unit Model / Logical Operational Model.. 9

8 Physical Operational Model .. 11

9 Description of the entities and their attributes ... 12

10 Functionalities supported & technical details .. 13

11 Test Cases .. 15

Ankit Vohra AID for BLMS – V 1.0 Page 3 of 19

1 Introduction
This document provides information regarding Basketball League Management System (BLMS).

This system stores information about league, players, teams & player contracts.

BLMS enables user to process trading among the players of different teams. Trading history information is
also stored.

Here is overview of business rules of BLMS:

 Each league can have multiple seasons.
 Each league contains N teams playing in it.
 Each team can have 15 players on the team. However, it is possible that a league can

decide each season what is the maximum number of players.
 Each player can play on one or multiple positions: point guard, shooting guard, small

forward, power forward and a center.
 Each player has a contract with a team for a specific season. It is possible to have a one-

year contract or a multi-year contract.
 Each team can spend a limited budget for their team. It means if a salary budget is

$50.000.000, overall contract value should be below that value. Otherwise, a league will
detect the limit was breached and a team will have to pay for a luxury tax, which is 100% of
a value above the limit. League checks contract budgets.

 Teams can trade players. It is important to know when teams are doing trades, a sum of
player’s contracts on each side must be similar. There can be a difference of 20% of overall
traded value.

 Players can get injured during a season. In that case, their contract is not calculated in a
budget. Also, in that case, an empty spot is available on a team roster.

Here is overview of functional requirements that BLMS must support:

Create a basketball league management system. The database model should support storing information
about the league, teams, player and their contracts and should provide reporting functionality.

1. SQL script that will create the whole database along with the constraints and relationships.
 Also create a function which generates sample data.

2. Create a function which places a player on an injury list. Also, create a function or the same
one to remove a player from an injury list.

3. Create a function or a procedure to create trade between two teams. Allow trading multiple
players from each side.

4. Create a function which will provide information about the most expensive starting lineup for
a specific team. A starting lineup has one player on each position and it has to return five
players, one for each position.

5. Create a function which provides monthly validation if some of the teams breached a
contract limit. This function should generate luxury tax record.

6. Create a query which provides information which teams went over the budget limit for during
the season.

7. Create a list of most expensive teams and most expensive player.
8. Read - replica database on the same machine. Replication needs to be as real-time as

possible.

Ankit Vohra AID for BLMS – V 1.0 Page 4 of 19

9. Automatic backups of the database every two hours.

2 System Context Diagram
Below diagram is System Context for BLMS showing it as black box and the external actors that interact with
BLMS.

3 Use Case Diagram
Use case diagram provides more details about nature of interaction between actors & BLMS.

Implemented by

BLMS

User

User

UC_02: Generate
sample data

UC_03: Get most
expensive lineup for a

team

UC_04: Mark a player
injured in system

UC_05: Calculate luxury
tax for teams breaching

contract limit

UC_01: Trade players
among teams

Initiated by

Data backup
location

BLMS

Data backup
location

Replica
DB

Replica
DB

BLMS
DB

Initiated from

triggered by

Ankit Vohra AID for BLMS – V 1.0 Page 5 of 19

4 Architecture Overview Diagram
Architecture Overview contains the solution architecture that facilitates the understanding of solution elements
and their mutual relationships.

BLMS
DB

GUI tool

BLMS

Replica
DB

Data backup
location

User

Backup triggered by
OS process

Replication triggered
by DB process

Ankit Vohra AID for BLMS – V 1.0 Page 6 of 19

5 Functional Viewpoint: Component Model (Static View)
The static functional view describes the software components, their responsibilities, relationships & the way they
collaborate to implement the required functionality.

<<SubSystem>>
GUI tool

<<App Comp>>

Database dev
IDE

<<SubSystem>>
Database Server

<<Tech Comp>>

RDBMS

<<SubSystem>>

Replica Database

<<Tech Comp>>

RDBMS

<<SubSystem>>

Backup location

<<Tech Comp>>

Local storage / NAS

<<App Comp>>

OS Scheduler

Ankit Vohra AID for BLMS – V 1.0 Page 7 of 19

Ankit Vohra AID for BLMS – V 1.0 Page 8 of 19

6 Entity-Relationship Model (ERM) diagram for BLMS DB

Ankit Vohra AID for BLMS – V 1.0 Page 9 of 19

7 Operational Viewpoint: Logical Location View Model / Deployment Unit Model /
Logical Operational Model

i) Logical Location View Model: First step in developing operational viewpoint it to develop logical viewpoint
model.

ii) Deployment Unit Model: Below table shows DU model, which contains mapping between components
 (from Component Model) to defined Deployment Units (Presentation, Data, Execution OR installation)

Sub-system/Layer Component Presentation_DU Data_DU Execution_DU Installation_DU

GUI tool
Database
development IDE U01_IDE_UI I01_IDE

Database Server RDBMS D01_RDBMS
 OS Scheduler E01_OS_Sched

Backup location Storage U02_Bkp_Files

Replica Database RDBMS D02_Rep_RDBMS

User location

BLMS Backup location

Replica location

External intermittent connection External high-speed connection No permitted connection Internal high-speed connection

External 3
rd

 Party

Ankit Vohra AID for BLMS – V 1.0 Page 10 of 19

ii) Logical Operational Model: Here identified actors, along-with Logical nodes are placed into Logical Location
View Model developed earlier. In addition, identified Deployment Units are “deployed” onto the nodes in the
model.

LL_User location

LL_BLMS LL_Backup location

LL_Replica location

External intermittent connection External high-speed connection No permitted connection Internal high-speed connection

U02_Bkp_Files

U01_IDE_UI

D01_RDBMS

D02_Rep_RDBMS

E01_OS_Sched

LL_External 3rd Party

I01_IDE

Ankit Vohra AID for BLMS – V 1.0 Page 11 of 19

8 Physical Operational Model
Here is physical operational view for BLMS.

PL_User location

PL_BLMS PL_Backup location

PL_Replica location

External intermittent connection External high-speed connection No permitted connection Internal high-speed connection

Disk drive location

SQL Developer

Oracle/Postgres

Oracle/Postgres

Windows Task
Scheduler

PL_External 3rd Party

www.oracle.com

Ankit Vohra AID for BLMS – V 1.0 Page 12 of 19

9 Description of the entities and their attributes

S. NO. ENTITY/TABLE NAME ATTRIBUTE NAME Description

1
LEAGUE_SEASON_T
(To store league's

information)

SEASON_ID Sequential primary key for the entity (generated)
SEASON_NAME Season name
ACTIVE_SEASON Flag to indicate if the season is Active (Y or N)
MAX_PALYERS_NUM Max number of players for the season
MAX_SEASON_BUDGET Max budget authorised for the season

2
TEAMS_T

(To store data for teams)
TEAM_ID Sequential primary key for the entity
TEAM_NAME Team name (generated)

3
PLAYERS_T

(To store data for players)
PLAYER_ID Sequential primary key for the entity (generated)
NAME Player name (generated)

4
CONTRACTS_T

(To store Contracts data for
season)

CONTRACT_ID Sequential primary key for the entity (generated)
PLAYER_ID Player's ID (FK --> PLAYERS_T.PLAYER_ID)
TEAM_ID Team's ID (FK --> TEAMS_T.TEAM_ID)
SEASON_ID Team's ID (FK --> LEAGUE_SEASON_T.SEASON_ID)
PLAYING_POSITION Stores valid playing position for the player. This is

a multi-valued attribute. Allowed values:
1. 'Point Guard',
2. 'Shooting Guard',
3. 'Small Forward',
4. 'Power Forward',
5. 'Center'

INJURED_FLAG Flag to indicate if the player is Injured (Y or N)
ANNUAL_CONTRACT_VALUE Annual contract value for player for given season
CONTRACT_START_DT Contract start date
CONTRACT_DUR_YR Contract duration in years

5
TRADE_HIST_T

(To store player trade
history)

TXN_ID Sequential primary key for the entity (generated)
TRADE_ID Consistent id for 'N' transactions in a trade
PLAYER_ID Player's ID
CURRENT_TEAM Current team of traded player
PREVIOUS_TEAM Previous team of traded player
TRADED_VALUE Value at which given player was traded in txn
TXN_DT Date when trade happened

6 PLAYER_POSITIONS_T (players
& positions. Resolves n-n

relationship b/w Contracts &
Positions as 1 player can have n
positions & 1 position may be

associated with n players)

PLAYER_ID Player ID
POSITION_ID Position ID

7 POSITIONS_T (master table
to store positions)

POSITION_ID Position ID
DESCRIPTION Position name

Ankit Vohra AID for BLMS – V 1.0 Page 13 of 19

10 Functionalities supported & technical details

1. SQL script that will create the whole database along with the constraints and
relationships.

A master script master.sql will create required DB objects for implementing BLMS database.

Usage: @master.sql

2. Create a function which generates sample data

Function fn_generate_data has been created to generate sample data for the database tables.

Input Parameters: Number of teams in league, Number of max players & max budget allowed for a season

Usage: select fn_generate_data (8 , 15 , 70000000) from dual;

Return value : This returns VARCHAR2 string mentioning the status of operation (success or failure
message).

3. Function which places a player on an injury list. Also, to remove a player from an
injury list.

Function fn_toggle_injured has been created for this.

Input Parameters: It takes player id as input, marks player injured & returns success/failure message.

Usage: select fn_toggle_injured(<player_id>) from dual;

4. Function or a procedure to create trade between two teams. Allow trading multiple
players from each side.

Function fn_trade_pl has been created for enabling trade of multiple players among two teams &
maintaining trading history.

It performs a number of business validations before successful trading:

 1) Check validity of team ids
 2) Check if teams are full
 3) Check if entered players belong to same team , are valid players & are not injured
 4) Check if contract values are within permissible limits

Input Parameters: 1st team id, 1st team's player id’s as string, 2nd team id, 2nd team’s player ids as string.

Usage: select * from fn_trade_pl (1,'102,103', 8,'206,207');

Function returns a table type object with appropriate failure reason or success message with trade value.

Ankit Vohra AID for BLMS – V 1.0 Page 14 of 19

5. Function which will provide information about the most expensive starting lineup for a
specific team. A starting line-up has one player on each position and it has to return five
players, one for each position.

Function fn_ret_expensive_lineup has been created for this.

Input Parameters: It takes team id as input and returns most expensive line-up for that team in table format.
It takes into account that 1 player may play at multiple positions.

So in case of a player with high budget who can play in multiple positions, function will return record for only
1 position for that player.

Usage: select * from table (fn_ret_expensive_lineup(5));

6. Function which provides monthly validation if some of the teams breached a contract
limit. This function should generate luxury tax record.

Function fn_lux_tax has been created and it report teams with exceeding budget limit & calculates luxury
tax.

Usage: select * from table (fn_lux_tax);

It returns returns a table type object with luxury tax data for teams who have breached budget limit.

A procedure proc_lux_tax has been created which has been scheduled via a DB scheduler job
(GENERATE_LUXURY_TAX_RECS) to run on a monthly basis at 1 AM on 1st of every month.

This procedure will generate a file with name format LUXURY_TAX_MMDDYYYY_HHMISS.txt in a
directory with luxury tax data for teams who have breached budget limit.

7. Query which provides information which teams went over the budget limit for during
the season.

The SELECT query will sum-up contract values for non-injured players for each team and report if the value
exceeds allowed budget limit for the season.

8. A list of most expensive teams and most expensive player.

The SELECT query will sum-up contract values for non-injured players for each team and return the most
expensive team. If multiple teams have same max sum value, all will be returned.
Similarly, record(s) for most-expensive non-injured player will be returned. If multiple players have same
max sum value, all will be returned.

9. Read - replica database on the same machine. Replication needs to be as real-time as
possible.

A replica database has been setup for the purpose.

Real time replication has been set-up through "DB link - trigger" mechanism.

10. Automatic backups of the database every two hours.

Ankit Vohra AID for BLMS – V 1.0 Page 15 of 19

Windows Task Scheduler Job BIHOURLY_DB_BACKUP will run script "Bi-hourly_backup_orcl.bat" every 2
hrs and takes logical backup of DB schema in a directory.

11 Test Cases

S. No. Description Action Expected Result Actual

Result
1 Main DB: Ensure a

running Oracle DB
instance with schema
BLMS

Check DB & schema’s existence & login
to schema

BLMS schema exists & login is successful do

2 Replica DB: Ensure a
running Oracle DB
instance with schema
BLMS_REP

Check DB & schema’s existence & login
to schema

BLMS_REP schema exists & login is
successful

do

3 Login to main DB with
BLMS id

Login to BLMS. All below steps will have
to be executed in BLMS schema unless
mentioned.

Login successful do

4 In Main DB’s BLMS
schema, execute script
to create required DB
objects & verify that all
objects have VALID
status.

Execute master.sql Script executed successfully & all created
objects in BLMS schema are in VALID
state

do

5 In Replica DB’s
BLMS_REP schema,
execute script to create
required DB objects &
verify that all objects
have VALID status.

Execute master_rep.sql Script executed successfully & all created
objects in BLMS_REP schema are in
VALID state

do

6 Generate test data for
following input
parameters:

No. of teams = 10
No. of max players per
team = 15
Max budget for season
= 70 Mn

Run:

select fn_generate_data (10 , 15 ,
70000000) from dual;

Message “Data generated successfully.”
Will be returned.

LEAGUE_SEASON_T table will have few
rows with ONLY 1 row with column values
as:

ACTIVE_SEASON=’Y’
MAX_PLAYERS_NUM=15
MAX_SEASON_BUDGET= 70000000

TEAMS_T table will have 15 rows

PLAYERS_T table will have 150 rows

CONTRACTS_T table will have 150 rows
(i.e. 1 contract row for each player) for
active season id.

Each player will be assigned to a team
with a PLAYING_POSITION.

INJURED_FLAG will be N for all

ANNUAL_CONTRACT_VALUE for each
player will be set as random value b/w 1
Mn – 9 Mn (just a random value rounded
to nearest Mn)

do

Ankit Vohra AID for BLMS – V 1.0 Page 16 of 19

7 Verify that generated
data is replicated in
Replica DB.

Verify same data existence in Replica
DB schema by executing following in
BLMS_REP schema:

select * from LEAGUE_SEASON_T;
select * from TEAMS_T;
select * from PLAYERS_T;
select * from CONTRACTS_T;

Data will be same as in Main DB do

8 Mark a player as injured Execute:

select fn_toggle_injured(128) from dual;

Message “Success: Marked Injured” will
be returned and following query will return
count as 1 indicating player was
successfully marked injured:

select count(1) from CONTRACTS_T
where player_id=128 and injured_flag='Y' ;

do

9 Verify that updated data
is replicated in Replica
DB.

In BLMS_REP, run following query:

select count(1) from CONTRACTS_T
where player_id=128 and
injured_flag='Y' ;

Count value 1 will be returned do

10 Trade players by
passing in INVALID 1st
team id, say id 11

Run:

select * from fn_trade_pl (11,'102,103',
8,'206,207') ;

Message “Failed : Invalid team 11” will be
returned as team 11 is invalid. We have
team ids upto 10 in TEAMS_T table.

do

11 Trade players by
passing in VALID 1st
team id, and INVALID
2nd team id, say id 14

Run:

select * from fn_trade_pl (9,'102,103',
14,'206,207') ;

Message “Failed : Invalid team 14” will be
returned as team 11 is invalid. We have
team ids upto 10 in TEAMS_T table.

do

12 Trade players by
passing VALID team
ids, say 3 & 7.

Pass invalid players for
team 3

Run:

select * from fn_trade_pl (3 ,'102,232,
7,'206,207') ;

Message “Failed : Invalid/Injured player
ID(s) for team 3” will be returned as
players 102 does not exist in team 3

do

13 Trade players by
passing VALID team
ids, say 3 & 7.

Pass VALID players for
team 3 & INVALID
player(s) for team 7

Run:

select * from fn_trade_pl (3 ,'133,134',
7,'206, 193') ;

Message “Failed : Invalid/Injured player
ID(s) for team 7” will be returned as
players 206 does not exist in team 7

do

14 Pass VALID team ids
and player ids.

Make sure that total
contract value is same
for both ids from a team

Make sure that that No
player is injured from
any team

Run:

select * from fn_trade_pl (3 ,'133,134',
7,'193, 194') ;

Message “Trade Successfull. Contract
values: 4000000 & 4000000”

will appear citing successful trade & trade
values for both teams

do

15 Pass VALID team ids
and player ids.

Pass 3 players for 1st
and 2 for 2nd team

Run:

select * from fn_trade_pl (3
,'133,134,136', 7,'193, 194') ;

Message “Failed : team 7 does not have
enough empty slots.”

do

Ankit Vohra AID for BLMS – V 1.0 Page 17 of 19

Will appear as team 7 does not have
empty slots are full as per max_players
parameter passed during data generation.

16 Pass VALID team ids
but injured player ids.

Pass 3 players for 1st
and 2 for 2nd team AND
mark 1 player from 2nd
team as Injured.

Run:

select fn_toggle_injured(194) from dual;

select * from fn_trade_pl (3
,'133,134,136', 7,'193, 194') ;

Message “Failed : Invalid/Injured player
ID(s) for team 7”

Will appear as Injured player id was
passed for trading.

do

17 Mark player marked in
above step as NON-
Injured.

Run

select fn_toggle_injured(194) from dual;

Message “Success: Marked NOT Injured”
will be returned and player is eligible for
trading now

do

18 Pass VALID team ids
and player ids.

Mark 1 player from 2nd
team as injured.

Pass 3 players for 1st
and 2 for 2nd team. All
players should be
VALID & Non injured.

Make sure that contract
value totals are unequal
and there is more than
20% difference from
smaller value.

Run:

select fn_toggle_injured(194) from dual;

Now attempt trading with VALID player
ids:

select * from fn_trade_pl (3
,'133,134,136', 7,'193, 199) ;

Message “Failed : Trade value mismatch:
7000000 & 12000000” will appear as
trade value is not within permissible limits
as per business requirement.

do

19 Pass VALID team ids
and player ids.

Pass 3 players for 1st
and 2 for 2nd team. All
players should be
VALID & Non injured.

Make sure that
difference of contract
value lies between 20%
of value of lower total
contract value.

Run:

select * from fn_trade_pl (3
,'133,134,136', 7,'193, 195') ;

Message : “Trade Successfull. Contract
values: 7000000 & 8000000” will appear
as

20%70000000 = 14,00,000

8000000 – 7000000 = 1000000 <
14,00,000

CONTRACTS_T table will get updated
with players having updated team ids

do

20 Verify trade history Run:

select * from trade_hist_t where
player_id in (133,134,136,193, 195)

order by trade_id,txn_id;

Trading history, with above trade and 5
transactions (1 for each player traded),
along-with current team, previous team
and traded value will be present.

do

21 Verify that updated data
is replicated in Replica
DB.

In BLMS_REP in Replica DB, run
following queries:

Select * from CONTRACTS_T where
player_id in (133,134,136,193, 195);

select * from trade_hist_t where
player_id in (133,134,136,193, 195)
order by trade_id,txn_id;

Updated team_ids will be present in
CONTRACTS_T.

Same trading history will be available in
TRADE_HIST_T in Replica DB.

do

Ankit Vohra AID for BLMS – V 1.0 Page 18 of 19

22 Retrieve most
expensive starting line-
up for specific team.

Run following query for team 5:

select * from table
(fn_ret_expensive_lineup(5));

This will return total 5 rows, one row for
each playing position with player id and
those player ids will be most expensive in
that team for given playing position.

Injured players will be ignored.

Same query should return same result in
Replica DB.

do

23 Monthly validation if
some team(s) breached
contract/budget limit.
This should generate
luxury tax record.

Run:

select * from table (fn_lux_tax);

Monthly scheduled procedure
PROC_LUX_TAX can be run via
following:

BEGIN DBMS_SCHEDULER.run_job
(job_name
=>'GENERATE_LUXURY_TAX_RECS');
END;

This will return rows with team name &
Tax amount for the teams whose total
contract value went above the budget limit
passed during data generation. Injured
players will be ignored while calculating
contract value.

The scheduler job will generate a file
containing (name format
LUXURY_TAX_MMDDYYYY_HHMISS.txt)
same data as above.

Same query should return same result in
Replica DB.

do

24 Query to check which
teams went over budget
limit for the season

Run:

select t.team_name ||' : '|| to_char(e.s) ||
' M' over_budget_teams
FROM teams_t t
,(SELECT team_id,sum
(annual_contract_value) s FROM
contracts_t WHERE INJURED_FLAG
='N' group by team_id) e
WHERE t.team_id = e.team_id
AND e.s> (SELECT
max_season_budget FROM
LEAGUE_SEASON_T WHERE
active_season = 'Y')
ORDER BY t.team_id;

This will return rows with team name &
contract value for the teams whose total
contract value went above the budget limit
passed during data generation.

Injured players will be ignored while
calculating contract value.

Same query should return same result in
Replica DB.

do

25 Verify that teams whose
budget went below
budget limit are not
selected in above 2
steps

Pick 2 teams from list of teams that
appeared in above 2 steps.

Mark few players from each team as
injured so that total team budget goes
below max budget limit.

Mark them injured via :

select fn_toggle_injured(< player_id >)
from dual;

Run above 2 steps again.

Message “Success: Marked NOT Injured”
will appear and Player will be marked non-
injured & injured_flag will get updated as
‘N’ in CONTRACTS_T table.

The 2 teams will NOT appear in the result
set.

do

26 Verify that updated data
is replicated in Replica
DB.

In BLMS_REP, run following query:

select * from CONTRACTS_T where
injured_flag='Y' ;

Players marked injured in above steps will
appear in query result.

do

27 Get list of most
expensive teams &
most expensive
player(s)

Run:

SELECT '===== Most Expensive
Players and Teams =====' FROM
DUAL
UNION ALL
select team_name ||' : '|| to_char(e.s) || '
M' from teams_t t

The SELECT query will sum-up contract
values for non-injured players for each
team and return the most expensive team.
If multiple teams have same max sum
value, all will be returned.

Similarly, record(s) for most-expensive
non-injured player will be returned. If

do

Ankit Vohra AID for BLMS – V 1.0 Page 19 of 19

,(SELECT team_id, sum
(annual_contract_value) s,row_number()
OVER(ORDER BY sum
(annual_contract_value) desc) r
FROM contracts_t WHERE
INJURED_FLAG='N' group by team_id)e
WHERE t.team_id = e.team_id
AND e.r=1
UNION ALL
SELECT p.name ||' : '||
to_char(annual_contract_value) || ' M'
FROM contracts_t c
, players_t p
WHERE annual_contract_value in
(SELECT MAX(annual_contract_value)
FROM contracts_t WHERE
INJURED_FLAG='N')
AND INJURED_FLAG='N'
AND p.player_id=c.player_id
ORDER BY 1;

multiple players have same max sum
value, all will be returned.

Same query should return same result in
Replica DB.

28 Automatic backups
every 2 hours

Verify the scheduled job is present in
operating system to take backup of main
DB/BLMS schema

DMP files should be getting generated on
a bi-hourly basis in operating system
directory.

Do

